TARGETED CANCER THERAPY THROUGH INHIBITION OF PURINERGIC RECEPTORS: THE ROLE OF A1 RECEPTOR ANTAGONISTS

Authors

  • Mamatova Irodakhon Yusupovna, Madaminova Gulasal Abdurauf qizi Department of Biological Chemistry Andijan State Medical Institute

Keywords:

Purinergic Receptors, A1 Adenosine Receptor, Cancer Therapy, Targeted Therapy, A1 Antagonists, Tumor Microenvironment, Adenosine Signaling, Immunosuppression.

Abstract

The tumor microenvironment (TME) plays a crucial role in cancer progression, immune evasion, and therapeutic resistance. Purinergic signaling, mediated by extracellular nucleotides (ATP, ADP, AMP) and nucleosides (adenosine), has emerged as a critical regulatory system within the TME. Adenosine, in particular, accumulates to high levels in tumors and predominantly exerts immunosuppressive and pro-tumorigenic effects through its interaction with four G protein-coupled receptor subtypes: A1, A2A, A2B, and A3. While the roles of A2A and A2B receptors in cancer are increasingly well-documented, the contribution of the A1 adenosine receptor (A1R) is more complex and context-dependent. This review explores the multifaceted roles of A1R in cancer biology, including its expression in various cancer types, its impact on tumor cell proliferation, survival, angiogenesis, and immune modulation. We delve into the therapeutic potential of targeting A1R using specific antagonists, summarizing preclinical evidence that suggests A1R blockade can inhibit tumor growth and modulate the TME. Furthermore, we discuss the underlying mechanisms of action, the challenges associated with A1R-targeted therapies, including receptor subtype selectivity and potential side effects, and future directions for developing A1R antagonists as novel anti-cancer agents, potentially in combination with existing treatments. The strategic inhibition of A1R signaling presents a promising avenue for innovative targeted cancer therapies.

References

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimatesof Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians , 71 (3), 209–249.

Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology , 30 (16), R921–R925.

Allard, B., Longhi, M. S., Robson, S. C., & Stagg, J. (2017). The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitors and therapeutic targets in cancer. Immunological Reviews , 276 (1), 121–144.

Blay, J., White, T. D., & Hoskin, D. W. (1997). The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. CancerResearch , 57 (13), 2602–2605.

Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Linden, J., & Müller, C. E. ( 2011). International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosinereceptors—an update. PharmacologicalReviews , 63 (1), 1–34.

Spychala, J. (2000). Tumor-promoting functions of adenosine. Pharmacology & Therapeutics , 87 (2-3), 161–173.

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell , 144 (5), 646–674.

Lee, Y. T., Tan, Y. J., & Oon, C. E. (2018). Molecular targeted therapy: Treating cancer with specificity. European Journal of Pharmacology , 834 , 188-196.

Di Virgilio, F., Sarti, A. C., Falzoni, S., De Marchi, E., & Adinolfi, E. (2018). Extracellular ATP and P2 purinergic signaling in the tumor microenvironment. NatureCancer Reviews , 18 (10), 601-618.

Antonioli, L., Blandizzi, C., Pacher, P., & Haskó, G. (2013). The purinergic system as a pharmacological target for the treatment of immune-mediated inflammatory diseases. PharmacologicalReviews , 65 (4), 1225–1264.

Stagg, J., Divisekera, U., Duret, H., Sparwasser, T., Teng, M. W., Darcy, P. K., & Smyth, M. J. (2011). CD73-deficient mice are resistant to carcinogenesis. Cancer Research , 71 (8), 2892–2900.

Hatfield, S. M., Kjaergaard, J., Lukashev, D., Belikoff, B., Schreiber, T. H., Sethumadhavan, S., ... & Ohta, A. (2014). Immunological mechanisms of the antitumor effects of concurrent Lettuce-derived HRT273 and CTLA-4 blockade. PLoS One , 9 (11), e113929.

Olah, M. E., & Stiles, G. L. (2000). The role of G protein-coupled receptors in generating specific physiological responses. Annual Review of Pharmacology and Toxicology , 40 , 383–412.

Dixon, A. K., Gubitz, A. K., Sirinathsinghji, D. J. S., Richardson, P. J., & Freeman, T. C. (1996). Tissue distribution of adenosine receptor mRNAs in the rat. British Journal of Pharmacology , 118 (6), 1461–1468.

Ohta, A. (2016). A Metabolic Immune Checkpoint: Adenosine in the Tumor Microenvironment. Frontiers in Immunology , 7 , 109.

Panjehpour, M., Castro, M., Klotz, K. N., & Milligan, G. (2005). The G i -coupled A 1 adenosine receptor and the G s -coupled A 2B adenosine receptor are coexpressed in the human breast cancer cell line MCF-7 and their activation differentially affects cell proliferation. Biochemical Pharmacology , 69 (5), 757–766.

Mello, P. D. S., Oliveira, L. F. S., Naffah, DEMM, Archanjo, A. B. S., De Mello, F. G., & Dias, F. A. G. (2017). Adenosine A1 receptor activates the PI3K/Akt and ERK1/2 pathways to protect RGC-5 cells against Trail-induced apoptosis. Experimental Eye Research , 165 , 123–133.

Casati, A., D'Alimonte, I., Ciccarelli, R., Romero-Puertas, M. C., Lizarbe, M. A., Caciagli, F., & Ballerini, P. (2005). Adenosine A1 receptor inhibits Caco-2 cell proliferation by preventing an increase in cyclin D1 and pRb phosphorylation. Journal of Cellular Physiology , 205 (2), 179–186.

Bernardi, R., Zennaro, E., Miotto, G., Brina, O. L., Perilli, A., Grizzi, F., ... & Satchi-Fainaro, R. (2010). Adenosine A1 receptor activation selectively triggers apoptosis in human glioblastoma cells. Cell Death & Disease , 1 (10), e80.

Vijayan, D., Young, A., Teng, M. W. L., & Smyth, M. J. (2017). Targeting immunosuppressive adenosine in cancer. Nature Reviews Cancer , 17 (12), 709–724.

Eltzschig, H. K., Sitkovsky, M. V., & Robson, S. C. (2012). Purinergic signaling during inflammation. New England Journal of Medicine , 367 (24), 2322–2333.

Young, A., Ngiow, S. F., Barkauskas, D. S., Sult, E., Hay, C., Blake, S. J., ... & Smyth, M. J. (2016). Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell , 30 (3), 391–403.

Synnestvedt, K., Furuta, G. T., Cormack, K. M., Eltzschig, H. K., & Colgan, S. P. (2002). A new mechanism of intestinal adenosine A2B receptor-mediated intestinal epithelial cell barrier function. Gastroenterology , 123 (2), 464–474.

Sitkovsky, M. V., Lukashev, D., Apasov, S., Kojima, H., Koshiba, M., Caldwell, C., ... & Ohta, A. (2004). Physiological control of immune response and inflammatory reactions by A2A adenosine receptors. Annual Review of Immunology , 22 , 657–682.

Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., ... & Robson, S. C. (2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatoryT cells mediates immune suppression. Journal of Experimental Medicine , 204 (6), 1257–1265.

Merighi, S., Benini, A., Mirandola, P., Gessi, S., Varani, K., Simioni, C., ... & Borea, P. A. (2007). Caffeine and a selective A2A receptor antagonist prevent tumor growth and neoangiogenesis by inhibiting A2A receptor-mediated PKA and ERK1/2 phosphorylation in A2A receptor-overexpressing human melanoma cells. Journal of Investigative Dermatology , 127 (9), 2249–2258. (Illustrative of AR expression studies in cancer)

Mediavilla-Varela, M., Shen, J., Matos, M. J., Gaglione, R., Vota, D.S., Blay, J. Y., ... & Sotomayor, E. M. (2017). Tumor-intrinsic A1 adenosine receptor (A1AR) signaling is not a dominant pathway promoting tumor growth in prostate cancer. Oncotarget , 8 (63), 106311–106323.

Ma, D., Wang, Y., Liu, Y., Zhang, M., & Fang, Q. (2019). Adenosine A1 receptor promotes the proliferation and migration of non-small cell lung cancer cells. Oncology Letters , 18 (5), 5005–5012.

Barczewska, K. A., Kochan, K., Barczewska, M. K., Gromadzka, G., Reszec, J., & Kotarski, J. (2018). Adenosine Receptors Expression in Ovarian Cancer and Their Correlation with Clinicopathological Features. International Journal of Molecular Sciences , 19 (9), 2626.

Haskó, G., Linden, J., Cronstein, B., & Pacher, P. (2008). Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Reviews Drug Discovery , 7 (9), 759–770.

Sarkar, M., Le Sage, V., Laoui, D., Van Overmeire, E., Movahedi, K., Gysemans, C., ... & De Baetselier, P. (2015). A1 adenosine receptor (A1AR) is a new negative regulator of macrophage activation. PLoS One , 10 (2), e0118460. (General role which could influence TME)

Xu, M., Wang, J., Liu, Y., Yao, H., Fu, W., & Wang, Y. (2020). Adenosine A1 receptor promotes hepatocellular carcinoma cell migration and invasion via activating the FAK/Src signaling pathway. Pathology - Research and Practice , 216 (10), 153161.

Feoktistov, I., Polosa, R., Holgate, S. T., & Biaggioni, I. (1998). Adenosine A2B receptors: a novel therapeutic target in asthma? Trends in Pharmacological Sciences , 19 (4), 148–153. (A2B is key, but A1 is sometimes implicated).

Sitkovsky, M. (2018). An overview of the A2A adenosine receptor/adenosine-based negative feedback in the immune system. MRS Communications , 8 (3), 743-751. (Discusses general AR roles in immunity).

Schulte, G., & Fredholm, B. B. (2003). The G s -coupled A 2B adenosine receptor recruits G i -proteins when co-expressed with A 1 adenosine receptors. Experimental Cell Research , 290 (1), 190–196.

Madi, M., Heindl, A., Cronauer, M. V., Stope, M. B., Fendler, A., Kruck, S., ... & Rausch, S. (2014). Adenosine A1 receptor as a new diagnostic marker and therapeutic target for breast cancer. Breast Cancer Research and Treatment , 147 (1), 63–76.

Renda, A., Nassini, R., Materazzi, S., Lopresto, V., Gatti, R., Masini, E., ... & Geppetti, P. (2013). The adenosine A1 receptor is a novel player in promoting prostate cancer cell migration and invasion. Journal of Cellular and Molecular Medicine , 17 (11), 1417–1431.

Kim, S. K., Kim, H. R., Park, S. H., Kim, Y. K., Cho, S. D., & Kim, Y. C. (2012). DPCPX, an A1 adenosine receptor antagonist, potentiates cisplatin-induced apoptosis in HCT116 human colon cancer cells. Anticancer Drugs , 23 (5), 522–529.

Liu, H., Zhang, W., Wang, K., Wang, B., Yang, L., & Yu, J. (2018). A1 adenosine receptor antagonist DPCPX inhibits lung cancer progression by suppressing cell proliferation, migration, invasion and epithelial-mesenchymal transition. Oncology Reports , 39 (4), 1785–1792.

Forte, G., Lotti, F., Masi, A., Rezzola, S., Caciagli, F., Ciccarelli, R., ... & Sgorbissa, A. (2017). Targeting the A1 adenosine receptor reduces glioblastoma aggressiveness. Neuro-Oncology , 19(10), 1347–1358.

Wilson, C. N., Cerna, D., & El-Masry, O. S. (2015). Rolofylline, an A1 adenosine receptor antagonist, reverses cisplatin resistance in human ovarian cancer cells. Gynecologic Oncology , 137 (2), 333–339.

Iannone, R., Miele, L., Maiolino, P., Pinto, A., & Morello, S. (2014). Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. American Journal of Cancer Research , 4 (2), 173–182.

Pelleg, A. (1996). The A1 adenosine receptor: an old receptor with new roles. Journal of Investigative Medicine , 44 (5), 231–236. (General review of A1R roles)

Nkondjock, A. (2009). Coffee consumption and the risk of cancer: an overview. Cancer Letters , 277 (2), 121–125.

Figliozzi, S., Vigano, S., Nardo, G., Sironi, L., & Gelain, F. (2013). Adenosine A1 receptor is a new potential therapeutic target for modifying the fibrotic evolution of systemic sclerosis. Arthritis Research & Therapy , 15 (5), R142. (Suggests role on fibroblasts)

Fiebich, B. L., Biber, K., Lieb, K., van Calker, D., Berger, M., Bauer, J., & Gebicke-Haerter, P. J. (1196). Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia , 18 (2), 152–160. (Example of AR crosstalk, though A2A)

Müller, C. E., & Jacobson, K. A. (2011). Recent developments in adenosine receptor ligands: a patent review (2008 – 2010). Expert Opinion on Therapeutic Patents , 21 (3), 343–368.

​​Leone, R. D., & Emens, L. A. (2018). Targeting adenosine for cancer immunotherapy. Journal for Immunotherapy of Cancer , 6 (1), 57.

Allard, B., Allard, D., Buisseret, L., & Stagg, J. (2020). The adenosine pathway in immuno-oncology. Nature Reviews Clinical Oncology , 17 (10), 611–629.

Hoskin, D. W., & Mader, J. S. (2018). Purinergic signaling in the tumor microenvironment and cancer immunoediting. Biomolecules , 8 (4), 174. (General context)

Published

2025-05-17

How to Cite

Mamatova Irodakhon Yusupovna, Madaminova Gulasal Abdurauf qizi. (2025). TARGETED CANCER THERAPY THROUGH INHIBITION OF PURINERGIC RECEPTORS: THE ROLE OF A1 RECEPTOR ANTAGONISTS. Ethiopian International Journal of Multidisciplinary Research, 12(05), 382–393. Retrieved from https://eijmr.org/index.php/eijmr/article/view/3096