

HYGIENIC ASSESSMENT OF THE LEVEL OF ATMOSPHERIC AIR POLLUTION

Boqijonov F.A, Nazirova M.R, Mamadaliyev D.D

Fergana medical institute of public health

Abstract: This article, the author presents recommendations on the impact on human health of harmful gases such as atmospheric air and sources of its pollutants, in particular the level of air pollution in the territory of the city of Fergana, dust in the air, carbon monoxide, sulfur oxide, nitric oxide and the prevention of the spread of these harmful factors.

Keywords: Atmospheric air, harmful gases, dust, malaise, bronchial asthma, motor transport, carbon monoxide, sulfur oxide, nitrous oxide.

INTRODUCTION: In order to ensure the effective and stable socio-economic development of the republic, in recent years in the field of ecology and environmental protection, deep reforms aimed at creating optimal conditions for public health and improving ecological balance are being carried out in our country as an important basis of state policy [2,4,5].

One of the most important issues today is keeping the atmosphere clean. According to the warnings of scientists, about 500 million tons of sulfur gas, sulfide oxide, nitrogen oxide and other pollutants are released into the atmosphere every year due to the economic activities of people [1,3].

LITERATURE ANALYSIS AND METHODOLOGY: According to data, by our time, the amount of dust in the atmosphere has increased by 20% compared to the beginning of the 20th century. Most of the toxic substances that pose a threat to human health, including 65-97% of carbon monoxide, 56-75% of carbohydrates, and 46-63% of nitrogen comes from pollutants emitted by existing motor vehicles in cities where more than half of the country's population lives [6,7,8,9,10].

Scientific research was carried out on the basis of the information found in the 2020-2022 inspections conducted by the Fargona Regional Department of Ecology and Environmental Protection, the Regional IIB, the Regional SEO and JS Department together with the employees of the Fargona City Department.

RESULTS: In the joint event, organizations and enterprises with motor vehicles, Fargona oil refinery, Fargona nitrogen plant, 245 cases - 30 more at 1 post at the entrance to Fargona city, 283 - 31 more at 5 posts at the entrance from Fargona city to Fargona district, Kuvasoy city 189 at the entrance - 21 up, Al-Farghani street - 241 - 21 up, Qori Niazi street - 89 - 15 up, A. Navoi street 301 - 31 up, Kuvasay street 276 - 25 was high, 174 of the total 1714 motor vehicles were above the meio, which was 10.1 percent.

Measurements of harmful CO₂ gases and smoke emitted from vehicles were carried out using the Autotest gas analyzer. As a result of inspections, 84 vehicles were reconfigured on the spot.

If the city of Fargona is conditionally divided into two regions, the clean region Okhunboboev region and the Kirguli region can be considered as the polluted region. Environmental pollution is mainly caused by industrially developed area, namely Kirguli region. The analysis of the data shows that the morbidity of the city population during the years 2020-2023 is directly related to atmospheric air pollution, and among children, adolescents and adults, respiratory tract diseases are in the first place - 14-16%, digestive system diseases are in the second place among adults - 7 -10%, the 3rd place is allergic diseases, endocrine, kidney, genital diseases - 5-7%, the 4th place is hypertension and ischemic heart diseases - 5-6% and anemia.

Based on the analysis of the data, the disease status of the population can be organized, and the following sources of atmospheric air pollution in the observation area can be included. There are a

total of 815 enterprises and organizations in the city, of which 15 are large enterprises, 10 are enterprises producing consumer goods, and 738 are small enterprises and micro-enterprises.

DISCUSSION.

In order to assess the level of atmospheric air pollution in 2020, 1201 air samples were tested for harmful gases such as dust, sulfur IV-oxide, carbon oxide, nitrogen oxide, and sulfuric acid.

Of these 1201 air samples, 824 were tested for dust, of which 244 did not meet the hygienic requirements, which was 30 percent. 25 out of 241 samples taken from the Fargona nitrogen plant, 21 out of 185 samples from FNQIZ, 16 out of 165 gas stations, 194 out of 406 samples at intersections, and 28 out of 66 car wash stations were found to be above the norm. In order to assess the level of atmospheric air pollution in 2021, 1281 air samples were checked for the following indicators: dust, sulfur IV oxide, carbon oxide, nitrogen oxide, sulfuric acid. Of these 1281 air samples, 890 were tested for dust, of which 282 did not meet hygienic requirements, which was 31 percent. They all turned to dust. In Fergana, 254 samples of nitrogen were exceeded, 14 of FNQIZ-185, 13-160 of gas stations, 210 of 428 intersections, and 20 of 96 car washes were above the norm. In order to assess the level of atmospheric air pollution in 2022, 1286 air samples were tested for the following indicators: dust, sulfur IV oxide, carbon oxide, nitrogen oxide, sulfuric acid. Of these 1286 air samples, 892 were tested for dust, of which 261 did not meet hygienic requirements, which was 29 percent. They all turned to dust. 254 nitrogen samples were taken in Fergana - 23 samples, 16 samples from FNQIZ-185, 12 out of 160 gas stations, 192 samples out of 428 in Chorahalaro, 18 samples out of 96 car wash stations were found to be above the norm.

REFERENCES:

1. Abdimo'minovna T. S. ATROF MUHITNING IFLOSLANISHI VA EKOLOGIK MUOMMOLAR //ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ. – 2023. – Т. 14. – №. 1. – С. 102-104.
2. Bekturbanova A. N. ATMOSFERANING IFLOSLANISHI VA UNING ATIROF MUHITGA TASIRI //О'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI. – 2022. – Т. 2. – №. 14. – С. 580-582.
3. Ismoilovich A. Y. et al. ATMOSFERA XAVOSINI IFLOSLANISHINI OLDINI OLISHDA TARIXIY VA XORIJIY TAJRIBADAN FOYDALANISH //О'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI. – 2022. – Т. 1. – №. 10. – С. 167-179.
4. Mirzakarim o'g'li M. M., Xasanboyevna R. D. ATROF-MUHIT IFLOSLANISHI SHAROITIDA ORGANIZMDA YUZ BERADIGAN O'ZGARISHLAR //О'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI. – 2022. – Т. 2. – №. 14. – С. 794-803.
5. Muhayyo N., Muqaddas N., Shoiraxon N. ATMOSFERA HAVOSINING INSON SALOMATLIGIGA TA'SIRI //Proceedings of International Educators Conference. – 2023. – Т. 2. – №. 1. – С. 298-302.
6. Yusupaliev R., Kuchkarov A., Iskandarova R. AZOT OKSIDLARINING ATROF-MUHITGA ZARARLARI //Proceedings of International Conference on Scientific Research in Natural and Social Sciences. – 2023. – Т. 2. – №. 1. – С. 127-130.
7. Faxriddinovna B. M. TUPROQ IFLOSLANISHI UNING SALBIY OQIBATLARI //Новости образования: исследование в XXI веке. – 2022. – Т. 1. – №. 3. – С. 81-86.
8. Abdulkakim o'g'li F. N. et al. ATMOSFERA HAVOSINING GAZ TARKIBINI O'ZGARISHIGA TA'SIR ETUVCHI OMILLAR //Новости образования: исследование в XXI веке. – 2023. – Т. 1. – №. 10. – С. 504-508.

- 9.Tadjibjayeva L. SHAHAR HUDUDLARIDA ATROF-MUHIT IFLOSLANISHINING AHOLI SALOMATLIGIGA SALBIY TA'SIRI //Наука и инновация. – 2023. – Т. 1. – №. 5. – С. 67-70.
- 10.Umarxonovna I. G. EKOLOGIK MUAMMOLAR //ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ. – 2023. – Т. 19. – №. 9. – С. 128-133.
- 11.Farrux azizjon o‘g‘li B. ATMOSFERA HAVOSI IFLOSLANISHINI AHOLI SALOMATLIGIGA TA'SIRINI GIGIYENIK BAHOLASH (FARG ‘ONA SHAHAR MISOLIDA) //JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH. – 2023. – Т. 6. – №. 5. – С. 648-653.