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DIAMETRAL AND SYMMETRY PLANE OF A SURFACE

Annotation:This article discusses the concepts of diametral and symmetry planes of surfaces, their
role and significance in geometry, as well as their practical applications. A diametral plane of a surface
is a plane that intersects the surface and divides it into two symmetric parts. Symmetry planes, on the
other hand, divide the surface into two parts, each of which is a mirror image of the other. These
concepts play an important role in analyzing the symmetry of geometric objects, their construction,
and optimization. The article also covers the use of these planes in various geometric shapes and
models, their significance in engineering problems based on symmetry principles, and the
mathematical methods used to determine the properties of surfaces.
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INTRODUCTION

We have introduced the concept of diametral lines for second-order curves. For a second-order
surface, we introduce the concept of a diametral plane. If a straight line intersects a second-order
surface at two points, M and N, then the segment MN is called a chord of the second-order surface.

Theorem 1. The midpoints of parallel chords lie in the same plane.[16-19]

Definition 1. A plane passing through the midpoints of parallel chords is called the diametral
plane of the surface.[10-15]

To write the equation of the diametral plane in an arbitrary Cartesian coordinate system, we
use the following expressions:

X=X+AN,y=y+ut,z=z+ytvax=x—At,y=y—put,z=z—-yt (1)
F(x,y,2) =0
we obtain the equation:

2F(x,y,2) % 2t(AFy (X, Y, 2) + PRy (XY, 2) + YF,(X,Y,2)) +

+12(a11A2 + agp? + agah? + 2a3,AU + 28,31y + 2az;Ay) =0 (@3

For this equation to hold for any t, the coefficient of t must be zero. Therefore, the equation of the
diametral plane can be written as:

AFy + PRy +YF, =0 ®3)
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It is evident that if a second-order surface has a center of symmetry, then any diametral plane
passes through this center.[1-9]

Thus, the center of a second-order surface is determined by solving the system of equations:
F,=0, F,=0, F,=0 (@))

For a paraboloid, the diametral plane is parallel to its axis. In this case, since azz = 0, equation
(3) does not contain the variable z.

For elliptic and hyperbolic cylinders, all points on their axes serve as centers, so any diametral
plane passes through the surface.

Example 1: Find the equation of the diametral plane of the second-order surface given by the
y 2+

equation 69x? + 3y? — 472 + 5xy — 2xz + 4y = 0 that passes through the line: % =5=0
Solution:
Given the equation:
AFy +uF, +yF, =0
For the surface equation:
X2 +3y? — 472 +5xy —2xz+ 4y =0
we compute the partial derivatives:
Fx=2x+5y—2z, F, =6y +5x+4,F, =— 8z — 2x
Substituting these into the equation:
A2x +5y —22),+ u(6y +5x+4) —y(8z+2x) =0
(2N +5u—2y)x+ BA+6p)y— (2A+8y)z+4u =0
The normal vector of the plane is:

n = (2\ +5u — 2y, 5\ + 6, 2\ + 8y)

4

X—2 z+1
3

Given the direction vector of the line:
u=(3;2;4) n u
Since N U, we obtain the equation:
6A + 15y — 6y + 10A + 12y +8A+ 32y =0
24N+ 27u+ 26y =0
The plane passes through the pointM(2; 0; — 1), thus:
2-(AN+5u—2y)+0-(BA+6u) + (2A+8y) +4u =0
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6GA+14p+4y =0 3A+7u+2y=0
Rewriting the system of equations:
{24)\ +27u+26y =0
SN+7u+2y=0
Solving for Y and A:

1oy

290—10y=0 p= 9"

70y _ 128y _ 128y
3N+ — +2y 0 3\= > A= R

Substituting into the equation:

256y 50y ) ( 640y 60y) ( 256y ) 40y __
— + + = + + =
( 87 29 2V X 87 29 y— 8y z 29 =0

(=) + (- (5)z+ F=0

14x+ 23y +222—-6=0

Answer: 14x + 23y +22z2—-6 =0
Definition 2:

Let the plane o be given. If for any point M belonging to the surface, the point symmetric to M
with respect to the plane o also belongs to the surface, then a is called the symmetry plane of the
surface.

Using the equation of the diametral plane, we derive the equation of the symmetry plane. Since
the midpoints of mutually parallel chords perpendicular to the symmetry plane belong to the symmetry
plane, the equation of the symmetry plane perpendicular to the vector a = {l, m, n} is given by

IFy + mF, +nF, =0 (5)

Since the vector a = {l, m, n} is perpendicular to the symmetry plane, the proportionality

alll+a12m+a13n _ a21l+a22m+a23n _ a31I+a32m+a33n (6)
| m n

To determine the direction perpendicular to the symmetry plane from Equation (5), we introduce a
proportionality factor K in Equation (6) and obtain the equivalent system:
(@11 —K)l+a;pm+a;n =0
axl+ (ap —kK)m+axpn=0 (7)
3.31| + azm + (3.33 - k)n =0
Since |, m, n are not all simultaneously zero, the determinant equation
aj; — Kk a2 a3
a1 ap—k a3 |=0
az1 az2 azz — K
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must hold.
Solving for K from this equation and substituting it into system (7), we determine the direction {I, m, n}.

If the symmetry plane of the surface is known, it becomes convenient to simplify the second-
order surface equation, making it easier to determine the canonical coordinate system.

Definition 2:
Find the symmetric equations of the plane for the given equation:
36x2 +4y? + 407> +8yz + 36x — 722+ 9 =0
Give coefficients:
a3 =36,a12 = 0,813 = 0,21 = 0,82 = 4,823 =4,a3; = 0,832 =4,
agz =40
The determinant equation:

36—k 0 0
0 4—k 4 |=0
0 4 40 — k

Expanding:

(36 —k)(4—Kk)(40—k) —16(36 —k) =0

(36 —k)(160 — 44k +k? —16) =0 (36 —k)(144 —44k+Kk?) =0
Solving for k:

k, = 36, k? — 44k + 144 =0

D=V442 — 4. 144 = \/1360 = 4/85

44+4+/85
2

44—4+/85

k2: >

=22+2/85 k3= =22 — 285

Thus, we obtain three symmetry planes.
First symmetry plane (for k; = 36):
Solving:

{—32m+4n:O
Am+4n =0

(Bm-n=0 1 _on=0 |

m+n=20
IFy + mF, +nF, =0 IF, =0
F,=0 F,=72x+36=0 2x+1=0

Thus, the first symmetry plane is:
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2x+1=0
Second symmetry plane (for k, = 22 + 21/85 ).
Solving:
(14 —2V85)I =0
(—18—2v85)m+4n=0, 1=0
4m + (18 = 2v/85)n =0
{(9+\/2%)m—2n:0
m,n =0
2m+(9—-+v85)n=0

2

n=1 (9+V85)m=2 M = G/

Substituting:
IFy +mF, +nF, =0

SO +F,=0 F,=8y+8 F,=80z+8y—72
V85-9

> (By+8z)+(80z+8y—72)=0

(V85 —9)(y+2) +2(10z+y—9) =0

V85y + 85z — 9y — 9z + 20z + 2y — 18 = 0
(V85 —7)y+ (V85 +11)z—18=0.
Thus, the second symmetry plane is:
(V85— 7)y+ (V85 +11)z—18=0
Third symmetry plane (for kg = 22 — 2v/85)
Solving:
(14 +2V85)I =0
(—18+2V85)m+4n=0, 1=0
4m + (18 +2V85)n =0
{(9—\/%)m—2n=o
m,n #0
2m+(9++85)n=0

= — — __2 ___ V85+9
n=1 (9-vV85)m=2 M= M=

Substituting:
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Fo+mFy+nF, =0  1=0 m=—"22 n=

—YF +F,=0 F,=8y+8z F,=80z+8y—72

— V%9 8y + 82) + (80z + 8y — 72) = 0

_(@+9)(y+2)+2(102+y—9) =0

— /85y — 85z — 9y — 9z + 20z + 2y — 18 = 0
(V85 +7)y+ (V85 —11)z+18 =0
Thus, the third symmetry plane is:
(V85 +7)y+ (V85— 11)z+ 18 =0
Answer: 2x+1=0, (V85—7)y+ (V85 +11)z—18 =0, (V85+7)y+ (V85— 11)z+ 18 =0

Conclusion and Suggestions

In this article, the concepts of diametral and symmetry planes of a surface, their geometric properties,
and practical applications were discussed. The symmetry plane serves as an important tool in studying
the structure of a surface and analyzing its properties. The diametral plane, on the other hand, is
widely used in determining spatial relationships on the surface and in modeling processes. The results
of this study can be useful in the analysis of various geometric shapes, as well as in solving practical
problems in engineering, technology, and physics. Based on this, an in-depth analysis of symmetry
and diametral planes of surfaces may lead to new approaches in scientific and technological fields.
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